

Sustainable Competence in Advancing Healthcare

Forum 3

The future is now – AI as a driver of sustainable healthcare?

Wednesday, 3 October 2018 | 14.45-17.15 | Kursaal C

Co-organised by COCIR and EHFG

With the kind support of Siemens Healthineers, Philips and GE Healthcare

Panel 1: The added value of AI in prevention and treatment

Marcus Zimmermann-Rittereiser

COCIR Artificial Intelligence Task Force Chair

Vice President Population Health Management and Partner Management, Siemens Healthineers

COCIR

Industry Perspective

- What do we mean by AI in Health and Care?
 - CADe, QIT, CDS, CADx*
- 7 Focus areas to play successfully
 - Build awareness with Innovators/early adaptors/KOLs
 - Support and enable access to massive amount of Imaging Data
 - Build a **sustainable G2M** Modell by Provisioning AI-plattforms integrated into clinicians daily routine workflow vs. stand alone applications
 - Drive adoption by impact driven (COF*-Perspective) use cases
 - Support deployment by robust Legal framework
 - Consider latest Regulatory Framework
 - Apply Ethical Framework
- Why is it important?

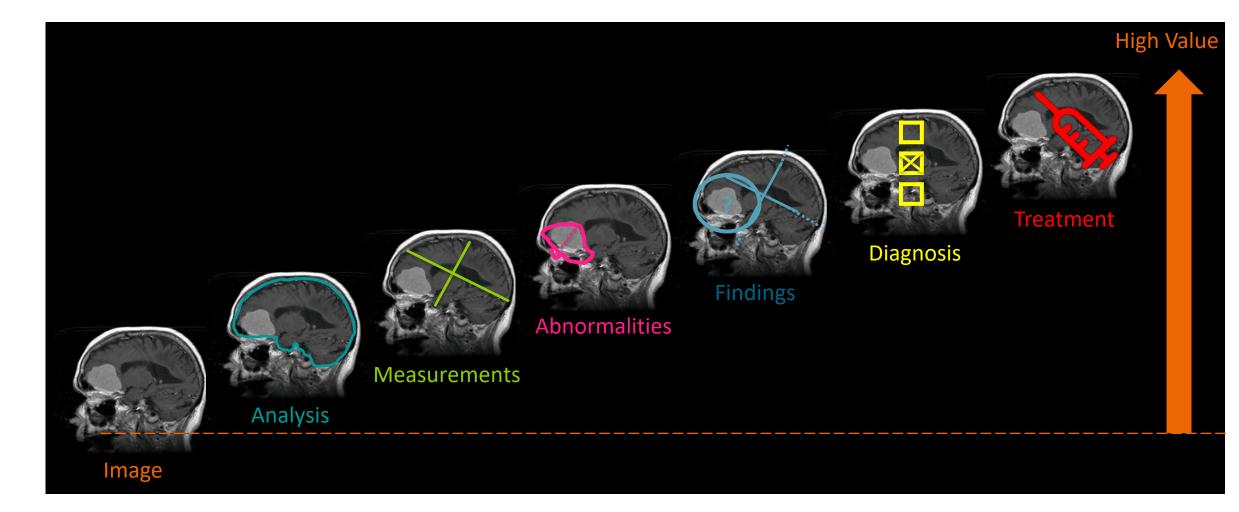
Why is it important?

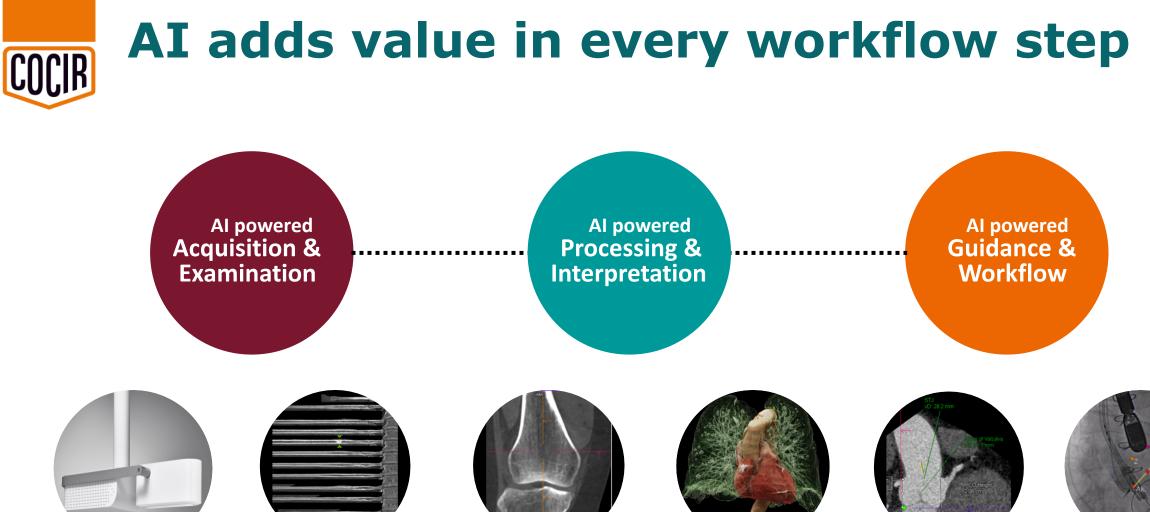
Increasing workload

Growth of CT/MR scanning 10-12% but radiologist workforce only 3% per year for the last ten years¹ Decreasing turnaround time

Halving interpretation time of radiologists leads to an increase in interpretation error rate by 16.6 %point² Diagnostic precision through quantification

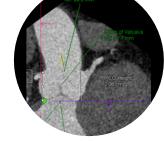
Cognitive factors (perception, failed heuristics) contribute to the diagnostic error in 74%


of cases


¹ The Royal College of Radiologists

² Faster Reporting Speed and Interpretation Errors: Conjecture, Evidence, and Malpractice Implications, Journal of the American College of Radiology, Volume 12, Issue 9, September 2015, Pages 894-896 ³ Cognitive and System Factors Contributing to Diagnostic Errors in Radiology American Journal of Radiology, 201, September 2013

AI is key enabler for Digitalization



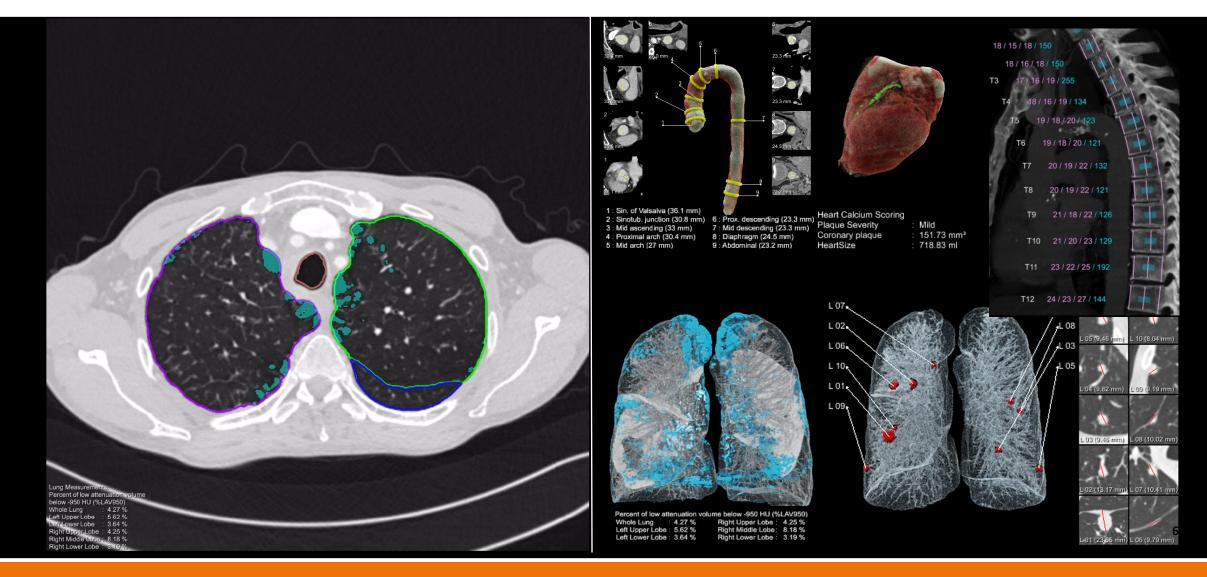
Accurate patient positioning

Spine and rib unfolding

ALPHA Anatomical Ranges

Anatomy Visualiser

Cardiovascular


TAVI-Planning

True fusion

Use Case: AI in Chest Imaging

Use Case: AI in Chest Imaging

20060116

2006011

3 mm³ nm mm

Patient : FRO_LungLesionFU_00001 1900-01-01

Lung

Emphysema quantification (%LAV950) :

Whole lung	: 21.38%	Right lower lobe	: 21.85%
Left lower lobe	: 18.08%	Right middle lobe	: 23.78%
Left upper lobe	: 21.19%	Right upper lobe	: 23.15%

Lesions

Lesion 01 (Left lower lobe	Previous exam	
Volume : 300.1 mm ³	(-3.75)	311.8 mm ³
2D-Recist : 9.6 mm	(-0.62)	9.6 mm
3D-Recist : 10.7 mm	(+3.99)	10.3 mm
Lesion 02 (Left lower lobe)	Previous exam

	•		*	
Volume		258.3 mm ³	(+28.98)	200.3
2D-Recist		11.2 mm	(+13.88)	9.8 m
3D-Recist		11.6 mm	(+8.94)	10.6

Lesion 03	(L	eft lower lobe	Previous exam	20060	
Volume		230.9 mm ³	(+30.18)	177.4 mm ³	
2D-Recist		11.6 mm	(+18.16)	9.8 mm	
3D-Recist		12.6 mm	(+10.48)	11.4 mm	

Heart

Heart : 1000.8 ml Calcium burden : Mild Exam Date : 2006-02-28

_IVascular

|--|

Sin. of Valsalba	: 34.3	Prox. descending	: 34
Sinotub. junction	: 35.7	Mid descending	: 29.
Mid ascending	: 39.0	Diaphragm	: 29
Proximal arch	: 35.2	Abdominal	: 27.
Mid arch	: 34.9		

Spine

		height ant	: (mm) mid	post	corr. HU
16	T1	20	18	19	199
	T2	20	17	19	179
	Т3	20	16	19	157
	T4	19	17	20	144
16	Т5	19	17	21	154
10	Т6	20	19	22	147
	Т7	21	19	22	148
	Т8	21	20	23	153
	Т9	21	20	22	145
	T10	23	20	23	151
1 ³	T11	24	22	26	162
	T12	26	24	28	142

Recommendations to Member States

1. Create Awareness with Innovators/KOLs

AI technologies present huge opportunities to improve quality of people's live and transform healthcare

2. Enable publicly available, disease driven, national, high quality Data sets and related framework/standards of using it

The more data the algorithm is trained on the better it gets

3. Invest in building a robust, powerful, scalable and highly secure data infrastructure/Data Center

e.g. Super Computer with 12 PetaFLOPS (12*10¹⁵) of computing power

4. Set-Up and Drive education of Data Eng.-/Data Scientists

Building impactful AI solutions need skilled DE/DS* - creating new jobs in Europe